返回列表 发帖

Scheme 函数式编程:工具箱

《函数程序设计算法》读书笔记。

列表映射
(define square (lambda (x) (* x x)))COPY
(define (sum-of-squares . nums)
  (apply + (map square nums)))COPY
(sum-of-squares 3 4)COPY
25COPY
(define f (lambda (x) (+ x 1)))COPY
(map f (list 1 2 3 4 5))COPY
(2 3 4 5 6)COPY
(define (sum-of-cubes . nums)
  (apply + (map * nums nums nums)))COPY
(sum-of-cubes 1 2 3)COPY
36COPY
(define (sum-of-cubes . nums)
  (apply + (map (lambda (nums)
                  (* nums nums nums))
                nums)))COPY
(sum-of-cubes 1 2 3)COPY
36COPY
常量过程
(define (values? . ignored)
  #t)COPY
(values? 1)COPY
#tCOPY
(define (constant v) (lambda ignored v))COPY
(define hey-kid (constant "Why?"))COPY
(hey-kid "Don't put your gum in the electrical outlet.")COPY
"Why?"COPY
(hey-kid "It's gross, and you'll get a shock.")COPY
"Why?"COPY
(hey-kid "The gum is wet. There's an electrical current.")COPY
"Why?"COPY
(hey-kid "Just don't do it. okay?")COPY
"Why?"COPY
(define len (lambda (ls)
  (apply + (map (constant 1) ls))))COPY
(len (list 3 2 3 4 7))COPY
5COPY
(length (list 3 2 3 4 4)) ; built-inCOPY
5COPY
过程节选
(define (invoke procedure . args)
  (apply procedure args))COPY
(invoke + 1 2 3)COPY
6COPY
(define power-of-two
  (lambda (power) (expt 2 power)))COPY
(power-of-two 10)COPY
1024.0COPY
(define (curry procedure)
  (lambda (initial)
    (lambda remaining
      (apply procedure
             (append (list initial) remaining)))))COPY
(define equal-to? (curry equal?))COPY
(equal-to? 2)COPY
#<procedure>COPY
((equal-to? 2) (+ 1 3))COPY
#fCOPY
((equal-to? 2) (+ 1 1))COPY
#tCOPY
耦合器
(define (compose outer inner)
  (lambda args
    (let ((intermediates (apply inner args)))
      (apply outer (list intermediates)))))COPY
(define (pipe earlier later)
  (lambda args
    (let ((intermediates (apply earlier args)))
      (apply later (list intermediates)))))COPY
(pipe + power-of-two)COPY
#<procedure>COPY
((pipe + power-of-two) 3 5)COPY
256.0COPY
((compose power-of-two +) 3 5)COPY
256.0COPY
(define (cross . procedures)
  (lambda args
    (map invoke procedures args)))COPY
(define add1 ((curry +) 1))
(define sub1 ((curry +) -1))
(define transfer-unit (cross sub1 add1))COPY
(transfer-unit 861 19)COPY
(860 20)COPY
(define (sect1 f x)
  (lambda (y)
    (f x y)))
(define (sect2 f y)
  (lambda (x)
    (f x y)))
(define (dispatch . procedures)
  (lambda args
    (map (sect2 apply args) procedures)))COPY
((dispatch + *) 3 4)COPY
(7 12)COPY
(define (unwrap-apply f) (lambda (args) (apply f args)))COPY
((unwrap-apply +) (list 2 3 4))COPY
9COPY
((pipe (dispatch + *) (unwrap-apply <)) 3 4)COPY
#tCOPY
((pipe (dispatch + *) (unwrap-apply <)) 1 2)COPY
#fCOPY
适配器
(define (>initial initial . ignored)
  initial)COPY
(define (>next initial next . ignored)
  next)COPY
(>initial 1 2 3) ; > means 'keep'COPY
1COPY
(>initial 0 #t '())COPY
0COPY
(transfer-unit 861 19)COPY
(860 20)COPY
((pipe transfer-unit (unwrap-apply >initial)) 861 19)COPY
860COPY
(define (>all-but-initial initial . others) others)COPY
((pipe transfer-unit (unwrap-apply >all-but-initial)) 861 19)COPY
(20)COPY
(define (identity something) something)COPY
(identity 2333)COPY
2333COPY
(define (>exch initial next . others)
  (append (list next initial) others))COPY
(>exch 1 2)COPY
(2 1)COPY
(define (echo . args) (display args))COPY
(define (converse f) (pipe >exch (unwrap-apply f)))COPY
(expt 3 5)COPY
243.0COPY
((converse expt) 3 5)COPY
125.0COPY
(define (~initial procedure)
  (lambda (initial . others)
    (cons (procedure initial) others)))COPY
(~initial (sect2 * 3))COPY
#<procedure>COPY
((~initial (sect2 * 3)) 3 4 5 6)COPY
(9 4 5 6)COPY
(define (~next procedure)
  (lambda (initial next . others)
    (cons initial (cons (procedure next) others))))COPY
(~next (sect2 * 3))COPY
#<procedure>COPY
((~next (sect2 * 3)) 3 4 5 6)COPY
(3 12 5 6)COPY
(define (~each f)
  (lambda args
    (map f args)))COPY
(~each (sect2 * 3))COPY
#<procedure>COPY
((~each (sect2 * 3)) 3 4 5 6)COPY
(9 12 15 18)COPY
(define sum-of-squares (pipe (~each square) (unwrap-apply +)))COPY
(sum-of-squares 3 4 5 6)COPY
86COPY
(define (compare-by pre comparer)
  (pipe (~each pre) (unwrap-apply comparer)))COPY
递归管理器
(define (recur base? terminal simplify integrate)
  (define (recurrer guide)
    (if (base? guide)
        (terminal guide)
        (let* ((res (simplify guide))
               (current (car res))
               (next (cadr res))
               (recursive-results (recurrer next)))
          (apply integrate (list current recursive-results)))))
  recurrer)COPY
((dispatch identity sub1) 3)COPY
(3 2)COPY
(define factorial (recur zero? (constant 1) (dispatch identity sub1) *))COPY
(factorial 5)COPY
120COPY
(define (build base? terminal derive simplify integrate)
  (define (builder . guides)
    (if (apply base? guides)
        (apply terminal guides)
        (let* ((recursive-results
                (apply (pipe simplify (unwrap-apply builder)) guides)))
          (apply integrate (list (apply derive guides) recursive-results)))))
  builder)COPY
(define (wrap . args) args)COPY
(define factorial2
(build (lambda (a b)
         (and (<= a 1) (<= b 1)))
       (constant (list 1 1))
       wrap
       (lambda (a b) (list (max (sub1 a) 1) (max (sub1 b) 1)))
       (lambda (x y) (list (* (car x) (car y)) (* (cadr x) (cadr y))))))COPY
(factorial2 3 5)COPY
(6 120)COPY
(factorial2 7 2)COPY
(5040 2)COPY
(factorial2 0 0)COPY
(1 1)COPY
(factorial2 1 0)COPY
(1 1)COPY
(null? '())COPY
#tCOPY
(sum (list 3 4))COPY
7COPY
(length (list 3 4))COPY
2COPY
(define (wrap . args) args)
(define arithmetic-mean (pipe (pipe wrap (dispatch sum length)) (unwrap-apply /)))COPY
(arithmetic-mean 3 5)COPY
4COPY
(arithmetic-mean 1 2 3)COPY
2COPY
(arithmetic-mean 1 10 100)COPY
37COPY
(arithmetic-mean 1 2 1.5)COPY
1.5COPY
(constant 1)COPY
#<procedure>COPY
((constant 1))COPY
1COPY
((constant 1) 'others)COPY
1COPY
(length (list))COPY
0COPY
(define halve (sect2 div 2))COPY
(halve 20)COPY
10COPY
(halve 5)COPY
2COPY
(define (power-of-two? candidate)
  (or (= candidate 1)
      (and (even? candidate)
           (power-of-two? (halve candidate)))))COPY
(power-of-two? 2048)COPY
#tCOPY
(power-of-two? 4860)COPY
#fCOPY
(define (check stop? continue? step)
  (define (checker . args)
    (or (apply stop? args)
        (and (apply continue? args)
             (apply (pipe step checker) args))))
  checker)COPY
(define power-of-two? (check (sect2 = 1) even? halve))COPY
(power-of-two? 2048)COPY
#tCOPY
(power-of-two? 4860)COPY
#fCOPY
(define (iterate stop? step)
  (define (iterator . args)
    (if (apply stop? args)
        args
        (apply (pipe step iterator) args)))
  iterator)COPY
(define greatest-odd-divisor (iterate odd? halve))COPY
(greatest-odd-divisor 24)COPY
(3)COPY
(define double (sect1 * 2))COPY
(((lambda (bound)
  (iterate (unwrap-apply (pipe >initial (sect2 >= bound)))
           (unwrap-apply (cross double add1)))) 23) '(1 0))COPY
((32 5))COPY
(define (ceiling-of-log-two bound)
  ((pipe (iterate (unwrap-apply (pipe >initial (sect2 >= bound)))
           (unwrap-apply (cross double add1)))
         (unwrap-apply (unwrap-apply >next)))
   '(1 0)))COPY
(ceiling-of-log-two 23)COPY
5COPY
(ceiling-of-log-two 32)COPY
5COPY
(ceiling-of-log-two 8)COPY
3COPY
(ceiling-of-log-two 34)COPY
6COPY
(define (ceiling-of-log-two bound)
  (define (doubler most-recent-double count)
    (if (>= most-recent-double bound)
        count
        (doubler (double most-recent-double) (add1 count))))
  (doubler 1 0))COPY
(ceiling-of-log-two 34)COPY
6COPY
辗转相除法
modCOPY
#<procedure>COPY
(define divisible-by? (pipe mod zero?))COPY
(divisible-by? 60 2)COPY
#tCOPY
(divisible-by? 60 7)COPY
#fCOPY
(define lesser (lambda (x y) (if (< x y) x y)))COPY
(define (greatest-common-divisor left right) ; brute-force
  (let ((divides-both? (lambda (candidate)
                         (and (divisible-by? left candidate)
                              (divisible-by? right candidate)))))
        ((iterate divides-both? sub1) (lesser left right))))COPY
(greatest-common-divisor 20 12)COPY
(4)COPY
((dispatch >next mod) 3 4)COPY
(4 3)COPY
((lambda (arg) ((dispatch >next mod) (car arg) (cadr arg))) '(12 20))COPY
(20 12)COPY
((iterate (unwrap-apply divisible-by?)
           (unwrap-apply (dispatch >next mod)))
           '(20 12))COPY
((8 4))COPY
(define (greater-and-lesser l r)
  (if (< l r)
      (list r l)
      (list l r)))COPY
(greater-and-lesser 3 4)COPY
(4 3)COPY
(greater-and-lesser 4 3)COPY
(4 3)COPY
(greater-and-lesser 0 0)COPY
(0 0)COPY
(define greatest-common-divisor
  (pipe greater-and-lesser
        (pipe  (iterate (unwrap-apply divisible-by?)
           (unwrap-apply (dispatch >next mod)))
                            (unwrap-apply (unwrap-apply >next)))))COPY
(greatest-common-divisor 12 20)COPY
4COPY
(greatest-common-divisor 120 270)COPY
30COPY
(greatest-common-divisor 270 120)COPY
30COPY
高阶布尔过程
(define (^not condition-met?)
  (pipe condition-met? not))COPY
((^not zero?) 3)COPY
#tCOPY
((^not zero?) 0)COPY
#fCOPY
((^not zero?) 0)COPY
#fCOPY
(define (^et left-condition-met? right-condition-met?)
  (lambda args
    (and (apply left-condition-met? args)
         (apply right-condition-met? args))))COPY
((^et number? even?) 3)COPY
#fCOPY
((^et zero? even?) 4)COPY
#fCOPY
((^et zero? even?) 0)COPY
#tCOPY
(define (^vel left-condition-met? right-condition-met?)
  (lambda args
    (or (apply left-condition-met? args)
        (apply right-condition-met? args))))COPY
((^vel zero? odd?) 0)COPY
#tCOPY
((^vel zero? odd?) 1)COPY
#tCOPY
((^vel zero? odd?) 2)COPY
#fCOPY
(define (^if condition-met? consequent alternate)
  (lambda args
    (if (apply condition-met? args)
        (apply consequent args)
        (apply alternate args))))COPY
(define disparity (^if < (converse -) -))COPY
(disparity 588 920)COPY
332COPY
(disparity 920 588)COPY
332COPY
(define (conditionally-combine combine? combiner)
  (lambda (initial . others)
    (if (combine? initial)
        (list (apply combiner (cons initial others)))
        others)))COPY
((conditionally-combine odd? +) 1 2)COPY
(3)COPY
((conditionally-combine odd? +) 2 2)COPY
(2)COPY

返回列表